Demonstration of a quantum error detection code using a square lattice of four superconducting qubits

نویسندگان

  • A.D. Córcoles
  • Easwar Magesan
  • Srikanth J. Srinivasan
  • Andrew W. Cross
  • M. Steffen
  • Jay M. Gambetta
  • Jerry M. Chow
چکیده

The ability to detect and deal with errors when manipulating quantum systems is a fundamental requirement for fault-tolerant quantum computing. Unlike classical bits that are subject to only digital bit-flip errors, quantum bits are susceptible to a much larger spectrum of errors, for which any complete quantum error-correcting code must account. Whilst classical bit-flip detection can be realized via a linear array of qubits, a general fault-tolerant quantum error-correcting code requires extending into a higher-dimensional lattice. Here we present a quantum error detection protocol on a two-by-two planar lattice of superconducting qubits. The protocol detects an arbitrary quantum error on an encoded two-qubit entangled state via quantum non-demolition parity measurements on another pair of error syndrome qubits. This result represents a building block towards larger lattices amenable to fault-tolerant quantum error correction architectures such as the surface code.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface code quantum error correction incorporating accurate error propagation

The surface code is a powerful quantum error correcting code that can be defined on a 2-D square lattice of qubits with only nearest neighbor interactions. Syndrome and data qubits form a checkerboard pattern. Information about errors is obtained by repeatedly measuring each syndrome qubit after appropriate interaction with its four nearest neighbor data qubits. Changes in the measurement value...

متن کامل

Simplified quantum error detection and correction for superconducting qubits

We analyze simple quantum error detection and quantum error correction protocols relevant to current experiments with superconducting qubits. We show that for qubits with energy relaxation the repetitive N -qubit codes cannot be used for quantum error correction, but can be used for quantum error detection. In the latter case it is sufficient to use only two qubits for the encoding. In the anal...

متن کامل

Quantum codes on high-genus surfaces

An economy of scale is found when storing many qubits in one highly entangled block of a topological quantum code. The code is defined by construction of a topologically convoluted 2-d surface and does not work by compressing redundancy in the encoded information. The distinguishing property of a quantum computer is its ability to hold an amount of data that grows exponentially with the size of...

متن کامل

Quantum Logic Gates in Superconducting Qubits

Successful operation of a quantum computer will require unprecedented control of quantum systems. The basic qubit operations, quantum logic gates, are described by the linear Schrodinger equation: the “analog” nature of quantum state evolution makes these logic gates fundamentally sensitive to imperfections in control and loss of energy. In contrast, conventional digital logic can correct error...

متن کامل

Proof of finite surface code threshold for matching.

The field of quantum computation currently lacks a formal proof of experimental feasibility. Qubits are fragile and sophisticated quantum error correction is required to achieve reliable quantum computation. The surface code is a promising quantum error correction code, requiring only a physically reasonable 2D lattice of qubits with nearest neighbor interactions. However, existing proofs that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015